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Public Health Outcomes Module

A. Summary of the Public Health Outcomes Module

The Public Health Outcomes Module links the exposure to SE in shell eggs and egg products
with the adverse health outcomes of morbidity and mortality which may arise from the ingestion
of SE bacteria  (Fig. E-1).  These health outcomes include infection without illness, infection
with illness, and the consequences of illness which may include physician visits, medical
treatment, hospitalization, post-infection sequelae, and death.  The outcome from a single
exposure to SE from shell eggs or egg products for the individual varies widely and is a function
of the individual's age, health status, immune status, the number of SE bacteria consumed, the fat
content of the food vehicle, and other factors such as pregnancy and underlying liver disease or
kidney disease. The outcomes of the Public Health Outcomes Module are the primary measure of
the public health consequences of exposure to SE from shell eggs and egg products.  This module
may be used as the primary indicator of the public health benefits of specific risk mitigations
introduced into other modules within the SE Risk Assessment Model. 

The subsequent sections discuss the following elements of the module:

module structure

distributions used to specify module parameters

module outputs for a specific number of persons exposed to a specific dose

sensitivity analysis to determine the parameters which most influence the module outputs
and limitations of the Public Health Outcomes Module.
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Figure E-1 Flow of Data Into and Through the Public Health Outcomes Module 

1. Overall Structure of the Public Health Outcomes Module and the Relationship of
the Public Health Outcomes Module to SE Risk Assessment Model

In the context of the entire SE risk assessment model, the Public Health Outcomes
Module receives inputs from the Preparation and Consumption Module. Thus the Public
Health Outcomes Module indirectly incorporates inputs from all other preceding
modules (see figure above and Fig. E-1).  The public health impacts of exposure to SE
through shell eggs and egg products are computed in terms of numbers of illnesses and
specific case outcomes on an annual basis.  The relative worth of specific risk mitigation
efforts to reduce exposure to SE in shell eggs and egg products is measured in terms of
the outputs of the Public Health Outcomes Module. Although morbidity and mortality
have measurable economic impacts, the economic costs of illness and the economic costs
and benefits of mitigation activities are not included in this module.

2. Basic Module Flow 

This section contains a brief, non-mathematical description of the Public Health
Outcomes Module, and the specific inputs to the module,  and the specific outputs
produced by the module.  A more detailed and mathematical presentation of the module,
and the distributions of the input and output variables, and the specific details of the
modeling algorithms are found in the sections which follow. 
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A more detailed diagram of the structure of the Public Health Outcomes Module is
shown in Fig. E-2.  Fig. E-2 illustrates the basic form of the Public Health Outcomes
Module and its outputs.  The flow of data in the module and the information generated
by the Public Health Outcomes Module are as follows:

a. A given number of people are each exposed to a specific dose of SE bacteria. 

b. The population of people exposed to SE is partitioned into two sub-populations. 
One sub-population is assumed to be in good health and is referred to as a
‘normal sub-population’ in order to reflect the level of risk for disease from SE
in shell eggs and egg products which is usually seen in the general population. 
The second sub-population is referred to as the ‘susceptible sub-population’. The
susceptible sub-population is composed of persons who are at increased risk of
illness from SE in shell eggs and egg products. This susceptible sub-population
includes the elderly, newborn infants, persons with immunodeficiency from
treatment for cancer, pregnant women, persons with chronic illness (e.g. diabetes
or rheumatoid arthritis), and persons with HIV infections and AIDS. For the
purposes of this module, the assumption is made that both sub-populations have
the same food consumption patterns. However, it is recognized that some sub-
populations (not defined here) may consume foods which utilize raw or
undercooked eggs.

c. For each sub-population, the probability of an individual person within a sub-
population becoming ill from exposure to a specified dose of SE from shell eggs
and egg products is calculated using a stochastic dose-response function that
incorporates the uncertainty in parameters of the dose-response function.

d. From the number of persons exposed and the computed probability of becoming
ill from exposure to a specified dose of SE from shell eggs and egg products, the
distribution of the number of persons becoming ill in each sub-population
(normal and susceptible) is computed.  It should be noted that not every person
exposed to the dose of SE becomes ill. The ill persons in each sub-population are
then partitioned into four mutually exclusive groups based on clinical outcomes
after exposure to the SE and the development of illness.  The mutually exclusive
clinical outcomes are:

(1) Recovery from illness with no medical treatment

(2) Treatment by a physician with recovery from illness

(3) Hospitalization and subsequent recovery from illness

(4) Death from infection with SE from shell eggs and egg products

(5) Development of long-term sequelae such as reactive arthritis after the SE
infection.
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B. Inputs, Parameters, and Variables for the Public Health Outcomes Module

1. Definitions:  Each of the parameters used in the Public Health Outcomes Module has a
distribution of possible outcomes.  The Public Health Outcomes Module contains four
distinct types of data:  inputs, explicit parameters, implicit parameters, and state
variables. Each of these four distinct types of data are defined below.
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a. Inputs: Input values to the Public Health Outcomes Module are variables created
in the Preparation and Consumption Module. These inputs are exogenous to the
Public Health Outcomes Module and are not subject to modification within the
Public Health Outcomes Module.  

b. Explicit parameters: Explicit parameters are explicitly described as scalars or
random variables within the Public Health Outcomes Module.  Changes in the
inputs to the Public Health Outcomes Module or to the structure of the Public
Health Outcomes Module do not change the value of an explicit parameter.  An
example of an explicit parameter is the probability of visiting a physician given a
person is ill.

c. Implicit parameters: Implicit parameters are derived solely from the explicit
parameters and are not influenced by the inputs to the Public Health Outcomes
Module or the structure of the Public Health Outcomes Module.  Implicit
parameters function in the same way as explicit parameters and are derived by an
algebraic combination of explicit parameters instead of being explicitly specified
as scalars or distributions.  In the Public Health Outcomes Module, the implicit
parameters are used to specify rate variables which describe the probability or
rate of persons in one state of health moving into another state of health.  An
example of an implicit parameter is the probability of not visiting a physician
given that a person is ill.

d. Output Variables and State Variables: The term ‘state variable’ refers to
variables which describe the various states of health in which an ill person can
be found, including temporary states such as “ill”.  The output variables, which
the Public Health Outcomes Module tracks, are state variables which describe
permanent states of health, e.g., recover without medical treatment. Output
variables and state variables are derived by an algebraic combination of inputs to
the module, explicit parameters, and implicit parameters. 

The specific module inputs, explicit parameters, implicit parameters, and output variables are
described in the following section.  

2. Input Variables From The Preparation & Consumption Module

a. Dose: The Preparation and Consumption Module (which takes inputs from other 
preceding modules in the SE Risk Assessment Model) provides the input
variable of dose in the form of the number of viable and infectious SE bacteria
that are present after food preparation activities.  The entire dose of SE bacteria
is assumed to be ingested by every member of the exposed population.

b. Number of persons exposed: The Preparation and Consumption Module provides
the number of persons who are each exposed to the specified dose. 

c. A total of 60 pairs of ‘dose-number exposed’ are given as input to the Public
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Health Outcomes Module from the Preparation and Consumption Module in
order to fully represent the full range of doses to which the population is
exposed. For example, the Preparation and Consumption Module may say that
the range of the dose to which the population is exposed is between 10 SE
bacteria and 1000 SE bacteria. Not everyone will receive 10 SE bacteria and not
everyone will receive 1000 SE bacteria. There will be a certain number of
persons in the exposed population who will receive a specific dose. It is this
pairing of ‘dose’ and ‘number exposed’ which is given as input to the Public
Health Outcomes Module, and there are 60 of these ‘dose-number exposed’ pairs
which are given to the Public Health Outcomes Module in order to determine the
number ill persons and the types of illnesses based on the input from the
Preparation and Consumption Module.

3. Explicit Parameters

Although the Public Health Outcomes Module includes many implicit parameters and
other variables, there are only ten explicit parameters.  These ten explicit parameters and
the inputs from the Preparation and Consumption Module drive the Public Health
Outcomes Module.  The evidence and specifications of the ten explicit parameters are
covered in the section titled “D. Parameters in the Public Health Outcomes Module:
Evidence and Specification”.  Table E-1 contains a summary of the explicit parameters
and the implicit parameters and the derivation of the implicit parameters.  The ten
explicit parameters are described below.

a. The first explicit parameter is the probability of a person being in a sub-
population which is more susceptible to illness from exposure to SE from shell
eggs and egg products.

b. The probability of becoming ill after ingesting a specific dose of SE bacteria is
also an explicit parameter which is calculated for each sub-population so that
two explicit parameters are produced. These two explicit parameters are
calculated from a dose-response function which is further described in the
section titled: “E. Probability of Infection: Microbial Dose-Response Modeling”.

c. Six conditional probabilities describing three clinical outcomes of illness for
each of the two sub-populations (specified separately for the normal sub-
population and for the susceptible sub-populations, thus totaling six parameters). 
These conditional probabilities are

(1) The probability of seeing a physician given the person is ill, denoted by
the expression: Pr( physician visit | ill );

(2) The probability a person is hospitalized given they are being treated by a
physician, denoted by the expression: 
Pr( hospitalized | treated by physician ).
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(3) The probability a hospitalized person dies, denoted by the expression:    
Pr( death | hospitalized ).

d. The last explicit parameter is the probability of developing a sequela of an
infection with SE after recovering from the initial illness due to SE from shell
eggs and egg products.  In this module, the probability of developing reactive
arthritis is the only post-illness sequela which is modeled.

4. Implicit Parameters

Several parameters of the Public Health Outcomes Module are not specified directly,
(i.e. explicitly) but are derived from the explicit parameters.  These implicit parameters
are (see also Table E-1):

a. Probability that a person exposed to SE from shell eggs and egg products is in
the normal sub-population with respect to susceptibility to pathogens.

b. Probability of final clinical outcomes of illness which are conditioned on a
person being ill after ingesting a specific dose of SE bacteria. This probability is
derived separately for susceptible sub-populations and for normal sub-
populations.

c. Probabilities of recovery from the various clinical outcomes of gastroenteritis
due to SE are not entered as parameters; they are derived from three implicit
parameters, which are the three conditional probabilities listed:

Pr(physician visit | ill)

Pr(hospitalized | treated by physician)

Pr(death | hospitalized).
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Table E-1.   Explicit and Implicit Parameters in Public Health Outcomes Module 1,2

Explicit Parameter Implicit Parameter  Derivation of Implicit Parameter

Pr(susceptible) Pr(normal) 1 - Pr(susceptible)

Pr(physician visit|ill) Pr(recover without medical treatment) 1 - Pr(physician visit|ill)

Pr(hospitalized|physician visit) Pr(recover without being 1 - Pr(hospitalized|physician visit)
hospitalized|physician visit) 3

Pr(death|hospitalized) Pr(recover|hospitalized) 1 - Pr(death|hospitalized)

Pr(reactive arthritis|ill)

ID   :Public Health Outcomes ID  :dose parameter for susceptible ID  ÷ 10n
parameter for normal sub- sub-population
population     

s n

Pr(see physician and recover without Pr(physician visit|ill) × {1-Pr(hospitalize |physician visit)}
hospitalization)

Pr(see physician, are hospitalized, Pr(physician visit|ill) × Pr(hospitalized|physician visit) × {1 -
recover) Pr(death|hospitalized)}

Pr(death) Pr(visit physician|ill × Pr(hospitalized|physician visit) ×
Pr(death|hospitalized)

  All parameters are specified separately for susceptible and normal sub-populations except for pr(reactive arthritis).  1

  Derivation of implicit probabilities of clinical outcomes is contained in Module Parameters section of text.  All conditional and unconditional2

probabilities of clinical outcomes are for ill persons.

  Persons who are treated by a physician and recover without being hospitalized.3
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 Notation: Pr(A) is read as “the probability of A occurring”; Pr(A|B) is read as1

“the probability of A occurring given B occurs or has occurred”.
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Figure E-3.  Outcomes of Illness

Fig. E-3 shows the relationship between the explicit parameters associated with illness,
visiting a physician, and the implicit parameters associated with recovery without
treatment, recovery after physician visit, recovery after being hospitalized.

With the conditional probabilities:1

P1 = Pr(physician visit | ill)

P2 = Pr(hospitalized | physician visit)

P3 = Pr(death|hospitalized) and their
compliments

1-P1 = Pr(recover without medical treatment)

1-P2 = Pr(recover without being hospitalized
| treated by physician)

1-P3 = Pr(recover | hospitalized).

The implicit parameters are derived from and are consistent with the probability axioms:

(1) for a Bernoulli random variable without outcomes A and �, where �
equals “not A”, Pr(�) = 1 - Pr(A)

(2) for events A and B, probability of both A and B occurring =  Pr(A � B)
= Pr(A)Pr(B�A)

(3) for independent events A, B, and C,  probability of A, B, and C
occurring = Pr(A�B�C) = Pr(A)Pr(B)Pr(c).

The probabilities of the final outcomes are computed as follows:

(1) Pr(recover without medical treatment) = 
1-P1
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(2) Pr( physician visit and recover) = 
Pr(physician visit|ill) * Pr(recover without being hospitalized|physician visit) =
P1 * (1-P2)

(3) Pr(hospitalized and recover) =  
Pr(physician visit|ill)*Pr(hospitalized|physician visit)*Pr(recover|hospitalized) =
P1 * P2 * (1-P3)

(4) Pr(death) = 
Pr(physician visit|ill) * Pr(hospitalized|physician visit) * Pr(death|hospitalized) =
P1 * P2 * P3

The specific case outcomes are mutually exclusive.  For example, those persons who
were hospitalized are assumed to have seen a physician prior to being hospitalized and
are included in the group who saw a physician and were hospitalized; they are not
included in the group who saw a physician and were not hospitalized. The values of the
implicit parameters and the explicit parameters are estimated separately for the
susceptible sub-population and for the normal sub-population.

5. Module Outputs

In the Public Health Outcomes Module the following outputs are estimated for both the
susceptible sub-population and the normal sub-population and are separately presented
as totals for the susceptible sub-population and for the normal sub-population as well as
for the entire U.S. population.  These outputs are for all cases and outcomes for the time
period of one year.

a. Number exposed

b. Number ill

c. Number with specific clinical outcomes:

(1) Recover with no treatment

(2) Are treated by a physician and recover without being hospitalized;

(3) Are hospitalized and recover;

(4) Are hospitalized and die;

(5) Develop reactive arthritis after recovering from SE infection.
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d. Indicators of case-fatality rates: 

(1) Proportion of those ill who die (number deaths/number ill)

(2) Deaths per 100,000 persons ill.

The outputs of the Public Health Outcomes Module include the uncertainty contained in all
related variables in both the Public Health Outcomes Module as well as all previous modules. 
The outcomes are expressed as probability distributions rather than constants.  In addition to
specific summary statistics for each outcome variable (mean, minimum, maximum, and 90%
confidence limits), a frequency distribution for each output is presented in graphic form in the
section titled  “D. Parameters in the Public Health Outcomes Module: Evidence and
Specification”.

6. Modeling Conventions

The probability distributions of specific outcomes are used to compute the numbers of
persons with each outcome based on the number of people who become ill. Thus the
initial case-outcome probability statement, Pr(physician visit| ill),  is consistent with the
corresponding state variable, the number of people ill from exposure to the specified
dose of SE, in that only those who become ill from a specific dose of SE are considered
in the group for whom there is a probability distribution of being seen by a physician.

The numbers of persons with each of the four mutually exclusive outcomes shown above
are modeled as binomial distributions using the normal approximation (normal or
Gaussian distribution) for the binomial distribution where the mean and standard
deviation parameters of the normal distribution are estimated from the binomial
parameters n and p:

mean = np

standard deviation = (npq)   where q = 1-p.½

In each computation n = number of persons in the appropriate state and p = pr(specific
outcome from that state) as derived above.  Note that both n and p are distributions
which are either specified as implicit parameters or are derived as implicit parameters or
are derived as parameters of functions or other state variables.  Thus the resulting
distributions, which are normal distributions with mean = np and std. dev. = (npq)  , will½

not necessarily appear to be normally distributed despite the fact that the resulting
distributions are specified as normal distributions in the module.  As will be seen in the
section titled “F. Outputs of the Public Health Outcomes Module”, most state or output
variables are log-normally distributed, and this is expected because the distributions of
the outputs are derived as products of other distributions.
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C. Parameters in the Public Health Outcomes Module: Variables

This section examines in detail the parameters specific to the Public Health Outcomes Module. 
The paired input distributions of ‘dose - number exposed’ which are produced by the Preparation
and Consumption Module are described in the section of this report titled “Preparation and
Consumption Module”.  The role of the parameters described here can be visualized in Fig. E-2 -
Flow Chart of the Public Health Outcomes Module and in Fig E-3. -  Outcomes of Illness.

Explicit Parameters    

1. Proportion Susceptible - the proportion of the population which is more susceptible
to illness.

a. Evidence

The susceptibility to infection and disease from exposure to any pathogen
depends on a complex interaction between the host and the pathogen.  Certain
sub-populations have been identified which are more susceptible to Salmonella
as well as other infectious than the general population.  A partial list of persons
with increased susceptibility to infectious agents includes pregnant women,
infants, the elderly, immunocompromised persons (including persons with
diabetes, those infected with HIV, inter alia), persons with chronic diseases, 
nursing home residents, cancer patients, and organ transplant recipients.  This
group now constitutes nearly 10% of the U.S. population (CAST, 1994.)  Recent
analysis, which includes more categories of susceptible persons, suggests that
the sub-population in the USA which has an increased susceptibility to infections
accounts for 20% of the total population (Gerba et al., 1996).   

The elderly are particularly susceptible to infectious agents such as SE for a
number of reasons.  The disproportionate impact of severe complications and
death from salmonellosis in the elderly is illustrated by the epidemiologic
evidence:

(1) 62% of deaths from diarrheal diseases are accounted for by persons over
the age of 74 (Lew et al., 1991);

(2) The case-fatality rate in Salmonella outbreaks in nursing homes is 40
times the case-fatality rate for the general population (Levine et al.,
1991).

(3) Acid production in the stomach is recognized as a protective mechanism
against ingested pathogens such as SE. However, rates of acid
production decline with advancing age, and this places the elderly at
further risk.

There is increasing awareness that the use of antibiotics within 30 days prior to
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exposure to Salmonella increases susceptibility to Salmonella as an enteric
pathogen.  Oral administration of streptomycin to mice reduced the infectious
dose of SE from 10 to 10  (Bonhoff et al., 1964).   6  1

In addition, those persons taking antacids and H2 blockers appear to be at
increased risk of salmonellosis because of reduced stomach acidity. Acid
production in the stomach is recognized as a protective mechanism against
ingested pathogens such as SE.

The observations and evidence above demonstrate that the dose-response
relationship found in the data from the feeding trials of different species of
Salmonella do not accurately represent the likelihood of susceptible individuals
developing disease after exposure to Salmonella Enteritidis.  The available
evidence suggests that these susceptible individuals are 10 to 100 times more
susceptible to infection, illness, and death from SE than is the general
population.
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  The distribution for each parameter is described in the syntax of @Risk ( the2

simulation software used to execute this module) in the following general form:
DistributionName(parameter 1, parameter 2, etc).  For example the triangular distribution
has three parameters or arguments, minimum, most likely, and maximum and is specified
as “triangular(minimum, most likely, maximum).  Statistics include the mean or average
value, the mode or most likely value, and the lower and upper 90% confidence limits, the
X  and X  values.0.05  0.95
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Figure E-4

b. Expected Value: 0.22

It is expected that on average, 22% of the population is more susceptible to
illness from SE than the normal sub-population.

c. Distribution:   Triangular(0.15, 0.20, 0.30)     2

Mean 0.217

Minimum 0.150

Mode 0.200

Maximum 0.300

X 0.1840.05

X 0.2730.95
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Figure E-5

2. Probability Of Physician Visit given Illness, Normal Sub-Population 

a. Evidence:

The primary evidence for this parameter comes from the FoodNet active
surveillance program carried out by the FDA, USDA, and CDC (CDC, 1997).  In
the population survey, about 1 in 20 persons who had diarrheal disease reported
that they visited a physician for treatment.  We used this estimated, 1/20, as the
most likely value and estimated minimum and maximum rates by adjusting the
numerator by increments of five.

b. Expected Value: 0.0522

It is expected that on average, 522 persons per 10,000 persons in the normal sub-
population who become ill from SE will visit a physician.

c. Distribution: Triangular(1/25, 1/20, 1/15)

Mean 0.0522
Minimum 0.0400
Mode 0.0500
Maximum 0.0625
X 0.04360.05

X 0.06190.95
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Figure E-6

3. Probability Of Physician Visit Given Illness, Susceptible Sub-Population

a. Evidence:   

Clinical and professional experience suggest that susceptible persons are at risk
for increased severity and frequency of illness from SE than the normal sub-
population, and, therefore, these susceptible persons have a higher probability of
seeking medical treatment because of these more severe symptoms and more
frequent occurrence of symptoms.  In addition, many institutionalized patients
and elderly persons in nursing homes will be treated by attending physicians in
the institution or nursing home. This may result in an under-reporting of the
number of persons seeking care.

b. Expected Value: 0.0722

It is expected that on average, 722 persons per 10,000 persons in the susceptible
sub-population who become ill from SE will visit a physician.

c. Distribution: Triangular(1/20. 1/15, 1/10)

Mean 0.0522
Minimum 0.0500
Mode 0.0667
Maximum 0.1000
X 0.05640.05

X 0.09090.95



 Normal Population,
 Pr(hospitalized|physician visit)

P
R

O
B

A
B

IL
IT

Y

relative frequency

0.000

0.012

0.024

0.036

0.048

0.060

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Public Health Outcomes Module

Page 211

Figure E-7

4. Probability Of Being Hospitalized Given Physician Visit, Normal Sub-Population.

a. Evidence:  Clinical and professional experience. 

b. Expected Value: 0.0722

It is expected that on average, 722 persons per 10,000 persons in the normal sub-
population who become ill from SE and who visit a physician, will be
hospitalized.

c. Distribution: Triangular(1/20, 1/15, 1/10)

Mean 0.0722

Minimum 0.0500

Mode 0.0667

Maximum 0.1000

X 0.05640.05

X 0.09090.95
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Figure E-8

5. Probability Of Being Hospitalized Given Physician Visit, Susceptible Sub-
Population

a. Evidence:  Clinical and professional experience.  Additional evidence from
literature of more severe symptoms in susceptible persons and increased
likelihood of hospitalization to treat these conditions.  

b. Expected Value: 0.1220

It is expected that on average, 1220 persons per 10,000 persons in the susceptible
sub-population who become ill from SE and who visit a physician, will be
hospitalized.

c. Distribution: Triangular(1/15, 1/10, 1/4)

Mean 0.1220

Minimum 0.0667

Mode 0.1000

Maximum 0.2500

X 0.08160.05

X 0.17400.95
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Figure E-9

6. Probability Of Death Given that the Patient is Hospitalized, Normal Sub-
Population.

a. Evidence:  Clinical and professional experience.  

b. Expected value: 0.0722

It is expected that on average, 722 persons per 10,000 persons in the normal sub-
population who become ill from SE and who visit a physician and who are
hospitalized, will die.

c. Distribution: Triangular(1/20, 1/15, 1/10)

Mean 0.0722

Minimum 0.0500

Mode 0.0667

Maximum 0.1000

X 0.05650.05

X 0.09090.95
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Figure E-10

7. Probability Of Death Given Patient Hospitalized, Susceptible Sub-Population.

a. Evidence:  

Clinical and professional experience.  Published evidence includes reports of
case fatality rates in nursing home outbreaks of SE gastroenteritis are 40 times
higher than the case fatality rates reported for outbreaks of SE gastroenteritis in
general population.  In addition, high case fatality rates are reported for severely
immunocompromised persons such as those with advanced AIDS and persons
undergoing organ transplants.

b. Expected value: 0.133

It is expected that on average, 1330 persons per 10,000 persons in the susceptible
sub-population who become ill from SE and who visit a physician and who are
hospitalized, will die from the SE infection.

c.  Distribution: Triangular(1/20, 1/15, 1/4)

Mean 0.1333
Minimum 0.0500
Mode 0.0667
Maximum 0.2500
X 0.07230.05

X 0.21120.95
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Figure E-11

8. Probability Of Developing Reactive Arthritis As A Post-Illness Sequela, Normal
And Susceptible Sub-Populations.

a. Evidence: Published reports estimate that 2-3% of persons infected with SE and
a few other enteric pathogens develop reactive arthritis as a sequela to the
infection (CAST, 1994).

b. Expected value: 0.0300

It is expected that on the average, 300 persons per 10,000 persons in the total 
population who become ill from SE, will experience joint pain sometime after
the recovery from the diarrhea of SE-induce gastroenteritis. This arthritis is
called ‘reactive arthritis’.

c. Distribution Triangular(0.02,0.03,0.04)

Mean 0.0300
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Mode 0.0300
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X 0.02320.05
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Figure E-12

Implicit Parameters

The implicit parameters are derived directly from the explicit parameters. For this reason the
implicit parameters do not have distributions specified in the same way as the explicit
parameters.  The derivation of these implicit parameters is presented in the section titled “B.
Inputs, Parameters, and Variables for the Public Health Outcomes Module”on page 198.  The
statistics describing the following distributions (mean or expected value, minimum, maximum,
mode, 5  and 95  percentiles on the cumulative distribution) are generated by a simulationth  th

process and are not entered as arguments in functions which produce a distribution.  The
evidence for the implicit parameters comes from the explicit parameters from which they are
derived.

9. Probability Of Recovery Without Medical Treatment, Normal Sub-Population.

a. Expected value: 

It is expected that on average, 9480 persons of 10,000 persons in the normal sub-
population who are infected with SE and become ill will recover without seeing
a physician.

b. Distribution Statistics: 

Mean 0.948
Minimum 0.934
Mode 0.950
Maximum 0.960
X 0.9380.05

X 0.9560.95
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Figure E-13

10. Probability Of Recovery Without Medical Treatment, Susceptible Sub-Population.

a. Expected value: 

It is expected that on average, 9280 persons of 10,000 persons in the susceptible
sub-population who are infected with SE and become ill will recover without
seeing a physician.

b. Distribution Statistics:

Mean 0.928
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Figure E-14

11. Probability Of Physician Visit And Recovery Without Hospitalization, Normal Sub-
Population.

a. Expected value: 

It is expected that on average, 485 persons of 10,000 persons in the normal sub-
population who are infected with SE and become ill, will see a physician and
will recover without being hospitalized.

b. Distribution Statistics:

Mean 0.0485

Minimum 0.0364

Mode 0.0480

Maximum 0.0629

X 0.04050.05

X 0.05760.95
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Figure E-15

12. Probability Of Physician Visit And Recovery Without Hospitalization, Susceptible
Sub-Population.

a. Expected value: 

It is expected that on average, 634 persons of 10,000 persons in the susceptible
sub-population who are infected with SE and become ill, will see a physician and
will recover without being hospitalized.

b. Distribution Statistics:

Mean 0.0634

Minimum 0.0437

Mode 0.0699

Maximum 0.0911

X 0.04920.05

X 0.08020.95
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Figure E-16

13. Probability Of Physician Visit and Recovery After Hospitalization,  Normal Sub-
Population.

a. Expected value: 

It is expected that on average, 35 persons of 10,000 persons in the normal sub-
population who are infected with SE and become ill, will see a physician and be
hospitalized, and will recover.

b. Distribution Statistics:

Mean 0.00350

Minimum 0.00204

Mode 0.00349

Maximum 0.00596

X 0.002560.05

X 0.004620.95
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Figure E-17

14. Probability Of Physician Visit and Recovery After Hospitalization, Susceptible
Sub-Population.

a. Expected value: 

It is expected that on average, 77 persons of 10,000 persons in the susceptible
sub-population who are infected with SE and become ill, will see a physician and
be hospitalized, and will recover.

b. Distribution Statistics:

Mean 0.00765

Minimum 0.00324

Mode 0.00643

Maximum 0.01660

X 0.004680.05

X 0.011700.95
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Figure E-18

15. Probability Of Death, Normal Sub-Population.

a. Expected value: 

It is expected that on average, 3 persons of 10,000 persons in the normal sub-
population who are infected with SE and become ill, will see a physician and be
hospitalized, and will die.

b. Distribution Statistics:

Mean 0.000272

Minimum 0.000127

Mode 0.000254

Maximum 0.000553

X 0.0001840.05

X 0.0003850.95
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Figure E-19

16. Probability Of Death, Susceptible Sub-Population.

a. Expected value: 

It is expected that on average, 11 persons of 10,000 persons in the susceptible
sub-population who are infected with SE and become ill, will see a physician and
be hospitalized, and will die.

b. Distribution Statistics:

Mean 0.001180

Minimum 0.000248

Mode 0.000783

Maximum 0.003870

X 0.0005330.05

X 0.0021600.95



Public Health Outcomes Module

Page 224

D. Probability of Infection:  Microbial Dose-Response Modeling

The probability of infection with illness after ingestion of a specific dose of SE bacteria is not
established in the literature. There is no feeding trial with SE bacteria in the literature which
establishes a dose-response (i.e. illness) relationship for SE bacteria. There is a large volume of
associated scientific literature and theoretical considerations upon which a putative dose-
response (i.e. illness) relationship for SE bacteria may be built. Because of the importance of the
dose-response (i.e. illness) relationship for SE bacteria to the SERA model, this scientific
literature is reviewed in this section which is separate from the other sections of the Public
Health Outcomes Module which discuss parameters and inputs.

1. Evidence

Because of the ethical issues involved in testing human responses to toxins and
pathogens,  few trials using human subjects have been conducted in the United States for
decades.  Thus, dose-response analysis and inference remains one of the most perplexing
and pervasive issues in environmental health and risk analysis for a wide variety of
microbial agents.

The analysis of dose-response relationships is based on two distinct types of data:  (1)
feeding trials using human subjects, and (2) epidemiologic data from "natural
experiments".  Feeding trials are controlled experiments in which healthy volunteers are
fed carefully quantitated doses of pathogens, and the response of the healthy volunteers
to the exposure is monitored.  "Natural experiments" are outbreaks of bacterial food
poisoning in which people are accidentally exposed to bacterial pathogens and become
ill in sufficiently large numbers that public health authorities conduct an outbreak
investigation.  A bacterial cause may be identified, and a specific food containing the
pathogen may be identified.  Dozens of such outbreaks occur annually in the United
States,  but implicated food is rarely analyzed to determine the number of organisms per
gram of food material.

a. Feeding Trials

Feedings trials have been carried out for a variety of bacterial genera, including
Salmonella, Shigella, Campylobacter, E. coli, and Listeria.  Nine Salmonella
feeding trials were conducted between 1930 and 1973.  Six of the nine trials used
healthy, male prison volunteers.  The most extensive Salmonella trials were
performed by McCullough and Eisele in 1951 and used Salmonella serotypes
other than Salmonella Enteritidis.  The overall conclusion of these feeding trials
was that infective doses in the range of 10  organisms were needed to achieve a5

substantial probability of infection or illness (McCullough and Eisele, 1951a,
1951b).  However, this conclusion has been repudiated by other work and
epidemiologic evidence (D’Aoust, 1989).  The shortcomings of the Salmonella 
feeding trials have been summarized by Blaser and Newman (1982): (1) the
exclusive use of healthy, young, male prisoners; (2) repeat testing of same
subjects with the resulting intestinal immunity as a confounding variable; (3)
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small sample sizes; (4) failure to determine minimum infective dose; (5) too few
subjects at low doses.  Specific limitations of the feeding trials are: 

� 18 of the 22 tests-doses had less than 6 subjects.

� Salmonella serotypes used in feeding trials include Typhimurium,
Anatum, Meleagridis, Newport, Derby, Bareilly, Pullorum, Sofia, Bovis,
and Typhi.  For all non- typhi Salmonella tested, the smallest dose
administered was greater than 10  Salmonella bacteria.  Eleven of the 154

tests used a minimum dose exceeding 10  Salmonella bacteria.5

� In all the 11 non-typhi Salmonella trials, the lowest dose to cause
infection was the lowest dose tested.

� In 6 of 15 trials the lowest dose to cause disease was the lowest dose
tested (Blaser and Newman, 1982).

� Experimental evidence suggest that retesting or re-challenging subjects
with the same pathogen lowers the probability of illness and/or disease
for a given dose (Black et al., 1988).

� Repeated exposure to pathogens reduces likelihood of infection and
severity of symptoms to individuals in developing countries (Taylor,
1992).

b. Epidemiologic Evidence from Outbreaks

The food vehicle implicated in most foodborne disease outbreaks is often consumed or
discarded before clinical symptoms develop in the exposed individuals.  As a result,
specific food vehicles and causative agents are confirmed in less than half of all
outbreaks, and the pathogen is not commonly cultured from the implicated food vehicle. 
In the few cases where the implicated food vehicle is available and culture of the
implicated food vehicle is done, the bacterial pathogen is even less frequently
enumerated.  Salmonella was enumerated in the implicated food vehicle in some
outbreaks before 1982 as summarized by Blaser and Newman (1982).  From these
outbreak studies and other published outbreak studies since 1982, it has become clear
that Salmonella is infective and capable of producing disease at doses below the
minimum dose used in the feeding trials of 1951.  Specific outbreak studies which
demonstrated that low doses are capable of causing illness include:

� A large Salmonella Enteritidis outbreak in Europe from contaminated
candy produced clinical symptoms from the ingestion of less than 50
organisms.  It is suspected that the fat content of the chocolate had the
effect of protecting the Salmonella Enteritidis from gastric acidity, and
this made a lower dose exposure effective (Greenwood and Hooper,
1983).
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� A single Salmonella bacterium was capable of causing disease (D’Aoust, 
1985).

� An outbreak of salmonellosis from eating contaminated cheese was
reported.  Quantitative culture of the cheese showed that consumption of
100-500 SE was the infective dose sufficient to cause symptoms.  The
fat content of the cheese may have the effect of reducing the infective
dose of SE (Fontaine et al., 1980).

� Salmonellosis has been reported from the consumption of 60-230 SE
bacteria in hamburger.  Again, hamburger is a food containing fat.
(Woodburn and Strong, 1960).

� An outbreak of foodborne illness due to SE and involving 150 persons
was reported by public health officials in Minnesota.  The implicated
food vehicle was ice cream.  Based on an estimate of the attack rate of
6.6% and the volume of ice cream distributed, it was estimated by
number calculation that as many as 29,000 persons in Minnesota may
have had diarrhea associated with the SE-contaminated ice cream.  In
this study the researchers cultured 266 unopened containers of the
implicated ice cream.  Eight of the containers were positive for SE. 
Phage typing was done for five of the eight samples and all were phage
type 8.  Concentration in four of the eight samples was determined and
the highest enumeration of SE was 6 SE bacteria per 65 gram sample. 
This quantity was found in two of eight containers which were positive
for SE (Hennessy et al., 1996).  A recent study by Vought (Vought,
1998) re-analyzing the data from the enumeration of SE in the
implicated ice cream suggests an upper limit of 26 organisms per 65
gram serving.

� An outbreak of salmonellosis due to SE was investigated, and the
implicated food was hollandaise sauce.  An informal quantitation of one
sample of the sauce revealed 10 SE bacteria per gram.  However, the3 

culture was not performed to extinction, and the specimen had been
refrigerated for 72 hours after being taken home in a “doggie bag”.  If
two tablespoons of sauce were used, then the exposure would be about
10  SE per person.  In this outbreak all of the 39 exposed individuals4

became ill and 20 were hospitalized (Levy et al., 1996; bacterial count
data provided by Dr. M. Moody of the DC Commission on Public
Health, personal communication).

* In 12 outbreaks of salmonellosis the Salmonella was enumerated in the
implicated food vehicle.  In 10 of the 12 outbreaks less than 1.5 x 105

Salmonella were ingested; in 7 of 10 studies less than 500 Salmonella
were ingested.  This dose is four orders of magnitude less than the
minimum dose in most Salmonella feeding trials (Blaser and Newman,
1982).
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The data from these citations are presented in Table E-3 (see page 235) and shown
graphically in Fig. E-23 (see page 233). The few outbreaks of foodborne illness due to
SE which report data on the concentration of SE present in the implicated food suggest
that the infectious dose which resulting in illness is several orders of magnitude lower
than (1) the doses reported in the Salmonella feeding trials and (2) the doses which are 
predicted by dose-response models constructed from the Salmonella feeding trials. 

� The beta-poisson model was fitted to the pooled data from all of the 
Salmonella feeding trials; the resulting model estimates a probability of
infection of 0.20 from ingesting 10  Salmonella bacteria.  Because an4

infectious dose does not necessarily lead to illness, the probability of
infection is greater than the probability of illness.  It should be noted that
Salmonella serotypes other than Enteritidis were used in the Salmonella
feeding trials ( Fazil, 1996).

2. Quantifying Dose-Response Relationships

Mathematical estimation of dose-response relationships is analyzed in a probabilistic
framework where illness or other consequence is related to dose as an increasing
function.  This analysis produces a function that can be used in a predictive model. 
Issues of concern in quantifying the dose-response relationship include selecting an
appropriate functional form,  modeling specific outcomes (illness or infection as a
function of dose), and extrapolating from the data to lower doses.  This analysis is
further complicated by the absence of a feeding trail done specifically with SE.  For this
reason an appropriate Salmonella species or other bacteria for which feeding trials have
been done must be considered as a surrogate for SE. 

Functional Form:  A number of mathematical functions or models have been investigated
and used for developing predictive models for dose-response relationships for pathogens
including parasites, viruses, and bacteria (Crockett et al. 1996; Rose et al., 1991; Haas,
1983; Coleman and Marks, 1997;  Morales, 1997).  These functional forms include the
beta-poisson, exponential, log-normal, log-probit, logit, and Gompertz models.  Each has
its own particular attributes and drawbacks.  Thus the selection of an appropriate
functional form should include criteria other than statistical measures.  Additional
criteria are goodness-of-fit measurements,  biological plausibility, and consistency with
available evidence, especially when working in a sparse data environment (NSF
Workshop on "Specifying Probability Distributions With Limited Data", Proceedings
forthcoming in Risk Analysis).  

A comprehensive analysis of the known Salmonella exposure studies was conducted by
fitting a variety of functional forms including the beta-poisson model and exponential
model by maximum-likelihood estimation using a spreadsheet (Fazil, 1996).  In most
cases the beta-poisson had substantially better goodness-of-fit characteristics.  The
probability of illness by the estimated dose-response functions differs substantially from
the attack rates observed in outbreaks of diarrhea due to SE-induced gastroenteritis.
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However, the confidence intervals for these estimators can be large.  In many cases the
95% confidence area for the dose-response curve included nearly the entire range of the
data instead of a smaller range around the estimator of interest. A large 95% confidence
interval suggests that the data is extremely variable, sparse, or the functional form does
not accurately describe the data.  

In general the beta-poisson functional form appears to be a better model for diseases due
to viruses and bacteria, while the exponential functional form is a better model for
diseases due to parasites. The original form of the beta-poisson, as used by Fazil and
Hass (1997), has been modified by several authors (Morales et al, 1996; Teunis et al.
1996) to make parameter estimation more efficient.  In this modified form the probability
of illness is computed as:

Pr(infection) = 1 - (1 +dose/ ) .�
-�

� The beta-poisson function fits the data from the Shigella feeding trials
better than the exponential function (Crockett et al.,1996).

� The beta-poisson function fits all Salmonella feeding trial data,
considered separately or pooled,  better than the exponential function. 
(Fazil et al., in press).

� The beta-poisson function has the best goodness-of-fit characteristics,
followed by the exponential function, then log-normal and logit
functions when fitting a dose-response curve to the data from Salmonella
feeding trials (Morales et al., 1996)

� The exponential functional form is a better functional form for modeling
dose-response data for waterborne parasites such as Giardia (Rose et al.,
1991).

In general, when fitted to the same data, the exponential function produces a much
steeper dose-response curve than the beta-poisson function when fitted to the same data. 
The beta-poisson seems to overcome some of the limitations of the feeding trial design
which rely on a restricted set of subjects who are young, healthy, incarcerated men.  It
has been observed that flatter dose-response curves are typical of tests conducted on a
more heterogeneous population (Morgan, 1992).

3. Suitable Surrogate Organism for Salmonella Enteritidis

There are no known Salmonella Enteritidis feeding trials involving human test subjects
upon which a dose-response function may be based.  The alternative to this absence of
data for SE is to select an appropriate surrogate bacteria for which dose-response data is
available.  The data for all Salmonella species used in feeding trials was analyzed by
Fazil (1996).  None appear to be appropriate because (1) in some trials the exposure dose
was given with water and in other trials the exposure dose was given with food, (2) the
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Salmonella species used in the feeding trials appear to be less virulent than SE, based on
the epidemiologic data.  Morales et al (1996) fitted the data from the Salmonella species
and Shigella species feeding trials to several dose-response functional forms and
concluded that the Salmonella feeding trial data and low-dose extrapolation of the fitted
dose-response functions did not adequately model the attack rates found in the
epidemiologic investigations of SE outbreaks involving low-dose exposures (<1,000
organisms) to humans.  From their analysis of the Shigella species feeding trial data,
Morales et al. (1996) proposed Shigella dysenteriae as a surrogate for SE in modeling
the probability of illness. 

The beta-poisson functional form was estimated for the Shigella dysenteriae   feeding131

trials by Morales et al. (1996).  The resulting dose-response curve was found to also fit
the epidemiologic data from the 1994 outbreak of SE associated with ice cream in the
low dose range.  The 1994 outbreak of SE associated with ice cream was found to have a
calculated attack rate of 6.6%, and the infectious dose was assumed to be 6 SE bacteria
per 65 gram serving of ice cream (Hennessy, 1995).

4. Adapting the Shigella dysenteriae dose-response function to the Public Health
module.  

a. Dose-Response Function for the Normal and Susceptible Sub-populations

As discussed in the prior section, there is a sub-population consisting of persons
who for a variety of reasons are more susceptible to infection.  The clinical and
laboratory evidence suggests that these persons are from 10 to 100 times more
susceptible to infection than normal, healthy people.  The beta-poisson fitted to
the Shigella dysenteriae   data (Morales, 1996) was plotted in two131

formulations:  one formulation with the ID  parameter (related to the infectious50
dose for 50% of the population) as estimated and another formulation with the
ID  parameter reduced by a factor of 10 to indicate a possible dose-response50
function for susceptible people.  These curves were then superimposed on the
epidemiologic data (Table E-2, see page 198) to illustrate the compatibility of
the Shigella dysenteriae dose-response curve and the epidemiologic data (Fig. E-
24, see page 234).

b. Introducing Uncertainty To The Dose-Response Function.

The beta-poisson dose-response function is typically expressed with scalar
coefficients to produce a deterministic function that computes the probability of
illness given an exposure to a specified dose.  To make this relationship
stochastic, the ID  parameter of the function was expressed as a probability50

distribution instead of as a constant.  Because the beta-poisson functional form is
a two-parameter model, the confidence limits can not be estimated by a simple
adjustment of the statistical mean by some numerical adjustment of the variance. 
Confidence limits to these functions are typically estimated by a bootstrap
simulation, and the confidence bounds are determined by identifying the
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appropriate outliers.  To develop an appropriate distribution, the approximate
95% confidence bounds for the Shigella dysenteriae were determined from the
beta-poisson dose-response function estimated by Teunis et al. (1996).  Because
the confidence limits appeared to approximately normally distributed in the
range of doses of 1,000 to 10,000 bacteria, those bounds were used as the
criterion for the stochastic dose-response function using a normal distribution for
the ID  parameter.  The variance in the distribution (using the estimated ID50           50
parameter as the mean) was iteratively increased until a 95% confidence interval
around the probability of illness at a dose of 10  organisms was achieved and4

matched that determined by Teunis et al. (1996).
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Figure E-20

Figure E-21

The distribution was then specified as a normal distribution truncated at zero as a
minimum to avoid generating negative values which creates an error in the dose-
response calculation.  This distribution was used for the normal sub-population. 
For the susceptible sub-population, that sub-population was assumed to at least
10 times as sensitive as the normal sub-population so the distribution parameters
were divided by ten. 

(1) ID  parameter for the normal sub-population.50

Distribution: Truncated normal

Mean = 21.57
Variance = 20,
Minimum = 0
Maximum = 60

(2) ID  parameter for the susceptible sub-population50

Distribution: Truncated normal

Mean = 2.1157
Std. Dev. = 2.0
Minimum = 0
maximum = 6
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Figure E-22 Comparison of deterministic and expected value of beta-poisson dose response curves

The means of the resulting distributions are slightly different from the specified
mean because the distribution is truncated at zero and at the upper bound of 60
for the normal sub-population and 6 for the susceptible sub-population.  This
imparts a slight downward bias in the probability of illness compared to the
deterministic calculation.  The two sets of dose-response curves for the expected
value of the probabilistic model and the deterministic calculations are displayed
in Fig. E-22.  The upward bias is evident, but it is less than 2%.

    
    
     parameter values for deterministic dose response curves estimates by Morales et al (1996). 1

     Susceptible dose-response curve is based on: 
ID  of the susceptible sub-population  = (ID  normal sub-population)/10.50       50
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Figure E-23   Dose and Attack rate in outbreaks of different Salmonella species. See table E-3
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Figure E-24 Salmonella outbreak data (ingested dose and attack rate) and beta-poisson dose response
curves for Shigella dysenteriae estimated for normal and susceptible sub-populations.
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Table E-3.   Estimated dose and attack rates in outbreaks of human salmonellosis.

Serovar Dose
Log(10) Attack Number number
of Dose Rate Ill for 

Label

Fig.E-23 1

Boring, J.R. et al. typhimurium 1.7 x 10 1.23 12% 16,000 2

Lipson, A. schwarzengrund 44 1.64 100% 1 4

Fontaine, R.E., Arnon, S. et al. newport 60 1.78 45% 48 5

D’Aoust, J.Y., Aris, B.J., et al. eastbourne 100 2.00 45% 95 6

Fontaine, R.E., Cohen M.L., et al. heidelberg 100 2.00 28% 339 7

George, R.H. heidelberg 200 2.30 100% 1 8

Fontaine, R.E., Arnon, S. et al. newport 230 2.36 45% 46 5

Fontaine, R.E., Cohen M.L., et al. heidelberg 500 2.70 36% 339 7

Armstrong, R.W. typhimurium 11,000 4.04 52% 1,790 10

Lang, D.J., et al. cubana 15,000 4.18 100% 28 11

Lang, D.J., et al. cubana 60,000 4.78 100% 28 11

Reitler, R. zanzibar 150,000 5.18 100% 6 12

Angelotti, R., et al infantis 1,000,000 6.00 100% 5 13

Reitler, R. zanzibar 1 x 10 11.00 100% 8 1211

Hennessy Enteritidis 6 0.77 6% >1,000 1

Vought Enteritidis 24 1.38 6% >1,000 3

Levy Enteritidis 1,000 3.00 100% 39 9

Levy Enteritidis 10,000 4.00 100% 39 9

1. The data for doses and attack rates are shown graphically in Fig. E-23.  When two doses are reported
for the same study, this indicates that the study reported the exposure dose as a range.  Note that the
papers by Fontaine, R.E., Arnon, S. et al. and D’Aoust, J.Y., Aris, B.J., et al. did not provide an
unambiguous attack rate, and the value of 0.45 was used arbitrarily.
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E. Output of the Public Health Outcomes Module

This section describes the typical outputs from the Public Health Outcomes Module as a
demonstration of a simulation of a total population 100,000 persons, each ingesting 1,000 SE
bacteria.   These outputs can be used for validation of the Public Health Outcomes Module,
checking the Public Health Outcomes Module for internal consistency, or comparing the results
of the Public Health Outcomes Module with other evidence.  However, the value of this
demonstration simulation for module validation is limited because the number of exposed
persons in each sub-population (normal and susceptible) will be different with each simulation.
A single simulation run such as this demonstration examines the effects of exposing a total of
100,000 persons to a specific exposure.  Readers should note this when examining the number of
specific clinical outcomes.  In this context a more useful measure for comparing outputs are the
rates per 10,000 person exposed or per 10,000 persons who become ill.

Module output is presented graphically in Figs. E-25, E-26, and E-27 (see page 240), and the
public health outcomes  (number exposed, ill, recover with no treatment, physician visit,
hospitalized, death, and reactive arthritis) are illustrated for the normal, susceptible, and total
populations, respectively.  Summary statistics (mean, minimum, maximum, and the 5  and 95th  th

percentiles of the cumulative distribution) for each group and outcome are presented in Table E-4
(see page 239).

An examination of the graphic output shows all the outputs appear normally distributed on the
logarithmic scale; thus all outputs are lognormally distributed.  The second feature is the fact that
although there is a high probability of illness (averaging 0.65, 0.81, and 0.63 for the normal,
susceptible, and total population (Table E-4, see page 239), the vast majority of those ill recover
without any medical treatment.  The number who are ill is reduced by a 1.5 log reduction to show
the number of persons who are ill and being treated by a physician and recovering without being
hospitalized.  A one log reduction of that group reveals the number of persons who are
hospitalized, and a further one log reduction of the hospitalized group shows the number of
deaths.  In most cases, the uncertainty in the numbers increases as severity of clinical outcome
increases.  The erratic shape of the curves representing deaths in the normal and total populations
and the small blips or tails of the distributions in the normal and susceptible sub-populations
(between 3 and 5 logs) are artifacts of the simulation and do not imply any real anomalies.

An interesting feature of the demonstration simulation is the number of cases of reactive arthritis,
which is rarely considered in analyzing the impacts of foodborne disease. There are between one-
half of a log to one log more cases of persons with reactive arthritis than the number of persons
who are hospitalized.  This aspect of SE infections in humans may have a more significant
clinical and economic impact than previously suspected; many persons suffering from reactive
arthritis may not make the connection between a prior episode of gastroenteritis and the delayed
onset of reactive arthritis.

The differences in case fatality rates --measure by number deaths/number people ill and deaths
per 100,000 ill persons-- suggest (1) the parameter values that influence these numbers should be
carefully evaluated and more evidence assembled to improve them, and (2) finding mitigation
efforts in this sub-population may have a large impact on reducing mortality from SE infection. 
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The large uncertainty in the estimates (the 90% confidence limits to the deaths/100,000
susceptible persons are 42.3 persons and 230.2 persons) further indicate the need to refine the
parameter values that influence this particular outcome.  In general, the estimates for the total
population are consistent with case fatality rates previously recorded (CAST, 1994).

The reader should note these results are not the public health outcome of the SE risk assessment;
Table E-4 (see page 239) shows the results of a single exposure-dose and do not reflect the other
exposures that occur.  A full description of the complete public health outcomes is contained in
the section containing baseline results.
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Table E-4 Summary statistics for public health outcomes for normal, susceptible, and total populations from
the baseline simulation of 100,000 total population exposed to 1,000 SE organisms.

-----------------------------------Statistic---------------------------------

Population Category and Outcome Mean Minimum Maximum 5  % * 95  % *th th

Normal Sub-Population
Pr(illness) 0.65 0.55 0.98 0.57 0.79

Ill 78,333 70,106 84,882 72,733 83,601

Exposed 54,548 39,732 77,616 43,655 62,698

Recover, no treatment 48,856 37,445 73,804 41,349 59,180

Physician visit, recover 2,497 1,571 4,221 1,922 3,123

Physician visit, hospitalized, recover 180 69 391 121 254

Death 14 0 42 6 23

Reactive Arthritis 1,546 861 2,782 1,123 2,047

No. Deaths / No. Ill 2.7E-04 0.0E+00 6.9E-04 1.3E-04 4.4E-04

Deaths per 100,000 ill 27.0 0.0 69.0 12.3 44.2

Susceptible Sub-Population
Pr(illness) 0.82 0.76 0.98 0.77 0.89

Ill 21,677 15,118 29,894 16,934 27,256

Exposed 17,223 11,762 26,494 13,706 22,540

Recover, no treatment 16,443 10,769 24,329 12,700 20,927

Physician visit, recover 1,113 563 2,073 771 1,566

Physician visit, hospitalized, recover 136 35 368 74 218

Death 21 0 78 7 40

Reactive Arthritis 531 240 1,061 369 732

No. Deaths / No. Ill 1.2E-03 0.0E-00 3.4E-03 4.2E-04 2.3E-03

Deaths per 100,000 ill 118 0.0 383 42.4 230.2

Total Population
Ill 69,270 58,931 93,990 61,890 79,926

Recover, no treatment 65,300 55,132 88,264 58,327 78,426

Physician visit, recover 3,620 2,553 5,844 2,988 4,361

Physician visit, hospitalized, recover 316 171 605 230 417

Death 35 4 89 18 56

Reactive Arthritis 2,071 1,309 3,256 1,644 2,573

No. Deaths / No. Ill 5.1E-04 6.0E-05 1.3E-05 2.7E-04 8.1E-04

Deaths per 100,000 ill 50.5 6.0 134.0 26.8 81.3
* 5  % and 95  % are the fractiles of the cumulative distributionth    th
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Figure E-26

Figure E-25
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Figure E-27
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F. Sensitivity Analysis

1. Purpose

Sensitivity analysis is performed to identify how changes in the parameters of the Public Health
Outcomes Module change the values of state or outcome variables.  @Risk, the simulation
software used in this analysis generates two kinds of sensitivity statistics: (1) regression analysis
r  values and (2) correlation coefficients.  The r  values computed for parameters in the Public2 2

Health Outcomes Module were all near zero. This indicates a non-linear relationship between the
parameters and state variables, and thus the r  values are not reported.  The rank correlation2

coefficient is a measure of the degree of association between a parameter and a state or rate
variable.  Correlation coefficients have values between -1 and +1, inclusive.  Negative
coefficients indicate the variables are negatively correlated--i.e. a high value for one parameter is
associated with a low value in a state or rate variable. The converse is true for positive
correlation coefficients, with high value for one variable being correlated to a high value for the
other.   A rank correlation coefficient approaching zero means little association has been found
between a parameter and a variable.  A coefficient’s absolute value is the measure of the degree
of association; the sign indicates a negative or positive correlation.

2. Results

The sensitive analysis results for the demonstration simulation of 100,000 total population with
each person exposed to a dose of 1,000 SE bacteria are displayed in Tables E-5 through Table E-
10.  Tables E-5 to E-7 (see page 244) show the input parameters in the order the input parameters
occur in the module.  This series of Tables E-5 through E-7 (see page 244) will be most useful
for readers seeking to examine the significance of a specific parameter and how it changes
between output variables and between normal, susceptible, and total population groups.  In
Tables E-8 to E-10 (see page 248) the input parameters are listed in descending rank order of
correlation.  This series of tables will be most useful to the reader seeking to identify the most
significant parameters for a specific output variable in the normal, susceptible, or total
population groups.

The results shown are specific to the exposure and dose and should not be extrapolated to other
doses or exposures.  The sensitivity analysis provided for the complete output--the entire range of
exposures and doses--will incorporate all the variation and differences in response to different
doses. The sensitivity results from the demonstration simulation (100,000 total population each
exposed to 1,000 SE bacteria) have value as the correlation coefficients can be examined and
analyzed without the complicating factors of other exposures and doses.

A prominent feature of the results for this demonstration simulation is that the significance of a
particular parameter varies widely depending on the output.  For example, the probability of
being in the susceptible sub-population has correlation coefficients ranging from -0.36 to -0.11
for outputs from the normal sub-population (Table E-5, see page 244); yet in the susceptible sub-
population, the coefficients are all positive, ranging from +0.28 to +0.95 (Table E-6).  For the
total population the results are mixed; the coefficients for pr(susceptible) range from -0.09 to
+0.77 (Table E-7).  In general, for the normal sub-population, all the parameters have significant
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effects--with the exception of the outcome for reactive arthritis, only three output-parameter pairs
had a correlation with absolute value less than 0.10 and 12 of the 17 output-parameter pairs had
coefficients with absolute value greater than 0.25.

The situation is similar for the susceptible sub-population except the pr(susceptible) parameter
has more influence, as would be expected.  Those parameters with coefficients with absolute
value greater than 0.5 include Pr(susceptible), Pr(physician visit), Pr(hosp.|physician visit), and
Pr(death|hospitalized).  Thus the parameters relating to susceptibility and the probability of
clinical outcomes have a larger influence on outcome variables than does the parameter relating
to probability of illness, the ID  parameter.50

When the outcomes for the susceptible sub-population and the normal sub-population are
combined into the total, some of the effects which were quite noticeable in the susceptible sub-
population or in the normal sub-population statistics are dampened in the total population
outcomes while others emerge as more powerful.  For example, the ID  parameters for both the50

normal sub-population and susceptible sub-population range from -0.11 to -0.97, but in general
are quite high, indicating that this parameter is one of the most important in terms of its effect on
the outcome values (Table E-7).

When the input parameters are listed by their rank order (in descending order of absolute value
of the correlation coefficient), the relative significance of specific parameters for either a specific
output or between outputs is more clear.  As one would expect, the most significant parameter for
each output is the one most closely related to it, e.g., in the normal sub-population, for the
number of persons seeing physician and recovering (without being hospitalized), the most
significant parameter is pr(hosp|physician visit) (Table E-8, see page 248).  In general, as a
parameter is further distanced from an output in terms of the illness to clinical outcomes
continuum, its correlation coefficient (absolute value) declines.  The ID  parameters for the50

normal sub-population and susceptible sub-population have high rank order for total ill, number
recovering without treatment, and number seeing physician and recovering.  The ID  parameters50

begin to decline to where they are last in rank order for the number of deaths (Table E-10).  An
inspection of the tables will reveal there are no unimportant variables, e.g., those with
consistently low rank correlation; they are all significant to one or more output variables.
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Table E-5.  Sensitivity Analysis for Normal Sub-Population Outputs

Output Input Correlation
Variable Parameter Coefficient

Number recover          Pr(susceptible) -0.367372
with no treatment NP: ID50 parameter -0.918353

NP: Pr(physician visit) -6.16E-02

number physician Pr(susceptible) -0.250138
visit and recover NP: ID50 parameter -0.628577

NP: Pr(physician visit) +0.680765
NP: Pr(hosp.|phys vis) -8.15E-02

number hospitalized Pr(susceptible) -0.162457
and recover NP: ID50 parameter -0.424199
              NP: Pr(physician visit) +0.458259

NP: Pr(hosp.|phys. visit) +0.637448
NP: Pr(death|hosp.) -6.14E-02

number deaths Pr(susceptible) -0.106447
NP: ID50 parameter -0.250416
NP: Pr(physician visit) +0.269777
NP: Pr(hosp.|phys. visit) +0.369393
NP: Pr(death|hosp.) +0.364551

cases of reactive Pr(susceptible) -0.228819
arthritis NP: ID50 parameter -0.549129 

NP: Pr(physician visit) -1.38E-02
NP: Pr(hosp.|phys. visit -1.25E-02
NP: Pr(death|hosp.) +1.04E-03
NP: Pr(reactive arthritis) +0.773724
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Table E-6.  Sensitivity Analysis for Susceptible Sub-Population Outputs

Output Input Correlation
Variable Parameter Coefficient

total ill Pr(susceptible)
SP: ID50 parameter

           
number recover    Pr(susceptible) +0.952977
with no treatment SP: ID50 parameter -0.282389   

SP: Pr(physician visit) -4.23E-02
                
number physician Pr(susceptible) +0.770726
visits and recover SP: ID50 parameter  -0.232542

SP: Pr(physician visit) +0.525231
SP: Pr(hosp.|phys vis) -0.173962

number hospitalized Pr(susceptible) +0.460219
and recover SP: ID50 parameter -0.137337

SP: Pr(physician visit) -0.303962 
SP: Pr(hosp.|phys. visit) +0.740909
SP: Pr(death|hosp.) -0.147705

number deaths Pr(susceptible) +0.287700
SP: ID50 parameter -9.72E-02
SP: Pr(physician visit) +0.186787
SP: Pr(hosp.|phys. visit) +0.455073
SP: Pr(death|hosp.) +0.659489

     
number cases of Pr(susceptible) +0.681972
reactive arthritis SP: ID50 parameter -0.193067

SP: Pr(physician visit) +5.52E-03
SP: Pr(hosp.|phys. visit) -1.31E-04
SP: Pr(death|hosp.) -1.89E-04 
SP: Pr(reactive arthritis) -0.647577
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Table E-7.    Sensitivity Analysis for Total Population Outputs      

Output Input Correlation
Variable Parameter Coefficient

total ill Pr(susceptible) +0.104012
SP: ID50 parameter -0.159807
NP: ID50 parameter -0.976487

         
number recover with Pr(susceptible) +0.089920 
no treatment SP: ID50 parameter -0.154922   

SP: Pr(physician visit) +3.00E-03
NP: ID50 parameter -0.976811 

               NP: Pr(physician visit) -6.40E-02

number physician Pr(susceptible) +0.770726  
visits and recover SP: ID50 parameter  -0.232542 

SP: Pr(physician visit)  0.525231
SP: Pr(hosp.|phys vis) -8.173962

                 NP: ID50 parameter -0.590174
NP: Pr(physician visit) +0.638876
NP: Pr(hosp|phys vis) -6.45E-02

number hospitalized Pr(susceptible) +0.237280
and recover SP: ID50 parameter -0.111802

SP: Pr(physician visit) +0.232600
SP: Pr(hosp.|phys. visit) +0.564520
SP: Pr(death|hosp.) -0.117790
NP: ID50 parameter -0.297148
NP: Pr(physician visit) +0.315010
NP: Pr(hosp.|phys. visit) +0.440054
NP: Pr(death|hosp.) -3.80E-02

(Table continued on next page)
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Table E-7.   Sensitivity Analysis for Total Population Outputs, continued

Output Input Correlation
Variable Parameter Coefficient

number deaths SP: ID50 parameter -9.52E-02
Pr(susceptible) +0.208832
SP: Pr(physician visit) +0.169202
SP: Pr(hosp.|phys. visit) +0.408376
SP: Pr(death|hosp.) +0.594600
NP: Pr (physician visit) +0.129622
NP: Pr(hosp.|phys. visit) +0.172914
NP: Pr(death|hosp.) +0.165032
NP: ID50 parameter -0.113232

number cases of Pr(susceptible) +3.94E-02
reactive arthritis SP: ID50 parameter -9.35E-02

SP: Pr(physician visit) +5.65E-03 
SP: Pr(hosp.|phys. visit) -8.94E-03 
SP: Pr(death|hosp.) -7.69E-03 
SP: Pr(reactive arthritis) +0.249099
NP: ID50 parameter -0.543518
NP: Pr(physician visit) -9.05E-03 
NP: Pr(hosp.|phys. visit) -3.52E-03 
NP: Pr(death|hosp.) -2.88E-03
NP: Pr(reactive arthritis) +0.772666
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Table E-8.  Sensitivity Analysis for Normal Sub-Population: Input Parameters by Rank Order Correlation 

Output Input Correlation
Variable Parameter Coefficient

Number recover         NP: ID50 parameter -0.918353
with no treatment Pr(susceptible) -0.367372

NP: Pr(physician visit) -6.16E-02

number physician NP: Pr(physician visit) +0.680765
visit and recover NP: ID50 parameter -0.628577

Pr(susceptible) -0.250138
NP: Pr(hosp.|phys vis) -8.15E-02

                 
number hospitalized NP: Pr(hosp.|phys. visit) +0.637448
and recover NP: Pr(physician visit) +0.458259

NP: ID50 parameter -0.424199
Pr(susceptible) -0.162457
NP: Pr(death|hosp.) -6.14E-02

number deaths NP: Pr(hosp.|phys. visit) +0.369393
NP: Pr(death|hosp.) +0.364551
NP: Pr(physician visit) +0.269777
NP: ID50 parameter -0.250416
Pr(susceptible) -0.106447

cases of reactive NP: Pr(reactive arthritis) +0.773724
arthritis     NP: ID50 parameter -0.549129 

Pr(susceptible) -0.228819
NP: Pr(physician visit) -1.38E-02
NP: Pr(hosp.|phys. visit) -1.25E-02
NP: Pr(death|hosp.) +1.04E-03
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Table E-9.  Sensitivity Analysis for Susceptible Sub-Population Outputs: Input Parameters by Rank
Order Correlation.

Output Input Correlation
Variable Parameter Coefficient
           
number recover    Pr(susceptible) +0.952977
with no treatment SP: ID50 parameter -0.282389   

SP: Pr(physician visit) -4.23E-02
                
number physician Pr(susceptible) +0.770726
visits and recover SP: Pr(physician visit) +0.525231

SP: ID50 parameter  -0.232542
SP: Pr(hosp.|phys visit) -0.173962

number hospitalized SP: Pr(hosp.|phys. visit) +0.740909
and recover Pr(susceptible) +0.460219

SP: Pr(physician visit) -0.303962 
SP: Pr(death|hosp.) -0.147705
SP: ID50 parameter -0.137337

number deaths SP: Pr(death|hosp.) +0.659489
SP: Pr(hosp.|phys. visit) +0.455073
Pr(susceptible) +0.287700
SP: Pr(physician visit) +0.186787
SP: ID50 parameter -9.72E-02

             
number cases of Pr(susceptible) +0.681972
reactive arthritis SP: Pr(reactive arthritis) +0.647577

SP: ID50 parameter -0.193067
SP: Pr(physician visit) +5.52E-03
SP: Pr(death|hosp.) -1.89E-04 
SP: Pr(hosp.|phys. visit) -1.31E-04



Public Health Outcomes Module

Page 250

Table E-10.  Sensitivity Analysis for Total Population Outputs: Input Parameters by Rank Order
Correlation       

Output Input Correlation
Variable Parameter Coefficient

total ill NP: ID50 parameter -0.976487 
Pr(susceptible) +0.104012

           SP: ID50 parameter -0.159807

number recover with NP: ID50 parameter -0.976811
no treatment SP: ID50 parameter -0.154922  
          Pr(susceptible) +0.089920  

NP: Pr(physician visit) -6.40E-02
SP: Pr(physician visit) +3.00E-03

         
number physician Pr(susceptible) +0.770726  
visits and recover NP: Pr(physician visit) +0.638876

NP: ID50 parameter -0.590174
SP: Pr(physician visit) + 0.525231

                 SP: ID50 parameter  -0.232542 
SP: Pr(hosp.|phys. visit) -8.173962
NP: Pr(hosp.|phys. visit) -6.45E-02

number hospitalized SP: Pr(hosp.|phys. visit) +0.564520
and recover NP: Pr(hosp.|phys. visit) +0.440054

NP: Pr(physician visit) +0.315010
NP: ID50 parameter -0.297148
Pr(susceptible) +0.237280
SP: Pr(physician visit) +0.232600
SP: Pr(death|hosp.) -0.117790
SP: ID50 parameter -0.111802
NP: Pr(death|hosp.) -3.80E-02

(Table continued on next page)
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Table E-10.  Sensitivity Analysis for Total Population Outputs: Input Parameters by Rank Order
Correlation, continued

Output Input Correlation
Variable Parameter Coefficient

number deaths SP: Pr(death|hosp.) +0.594600
SP: Pr(hosp.|phys. visit) +0.408376
Pr(susceptible) +0.208832
NP: Pr(hosp.|phys. visit) +0.172914
NP: Pr(death|hosp.) +0.165032
SP: Pr(physician visit) +0.169202
NP: Pr (physician visit) +0.129622
NP: ID50 parameter -0.113232
SP: ID50 parameter -9.52E-02

number cases of NP: Pr(reactive arthritis) +0.772666
reactive arthritis NP: ID50 parameter -0.543518

SP: Pr(reactive arthritis) +0.249099
SP: ID50 parameter -9.35E-02
Pr(susceptible) +3.94E-02
Pr(susceptible) +3.94E-02
SP: Pr(hosp.|phys. visit) -8.94E-03 
SP: Pr(death|hosp.) -7.69E-03 
SP: Pr(physician visit) +5.65E-03 
NP: Pr(hosp.|phys. visit) -3.52E-03 
NP: Pr(death|hosp.) -2.88E-03
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G. Limitations

1. Model Parameters.

a. Proportion susceptible.

Although several sources identify and quantify the types and numbers of persons
who are deemed to be more susceptible to foodborne pathogens (Gerba, 1994;
CAST, 1994), these data have several limitations.  Among the susceptible sub-
population there is a large range of susceptibility to pathogens, and there are
significant differences in the probability of specific clinical outcomes among the
susceptible sub-population.  For example, the probability of death after the onset
of illness (i.e. Pr(death|ill)) for nursing home residents involved in Salmonella
outbreaks is 70 times higher than the overall case-fatality rate in outbreaks of
salmonellosis in the general population (Mishu et al. 1994).  The probability of
specific clinical outcomes for the most robust of the susceptible group may be
nearly that of the most susceptible person in the normal sub-population.  The
probability of specific clinical outcomes could be modeled more accurately by
further stratifying the susceptible sub-population.  In addition, we have no
information about the disease avoidance behaviors, which may be unique to the
susceptible sub-population,  and we have no information about the prevalence of
such behaviors among the susceptible sub-population.  

b. Dose-Response Parameters (probability of illness)

The calculation of the probability of illness after exposure to a specific dose has
several limitations.

(1) The most significant limitation is the absence in the literature of a
feeding trial in which SE is the bacteria being studied with the intention
of describing a dose- response relationship.

(2) Limitations of data from feeding trials of enteric pathogens.

The section titled “C. Parameters in the Public Health Outcomes
Module: Variables” (see page 206) details the limitations of the data
from the feeding trial studies on enteric pathogens.  Among the
shortcomings of these studies are the small sample sizes at each dose-
exposure level, the repeated use of the same subjects in the same feeding
trial, the absence of exposure of test subjects to low doses of the enteric
pathogen, and the use of minimum doses which were relatively large in
most trials.  Furthermore, large differences were observed between
strains of specific serovars. These large differences make it difficult to
extrapolate from the results of strains used in the feeding trial studies to
exposure of humans to different strains not used in the feeding trial
studies.  These large differences produce a dose-response curve which
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has very wide 95% confidence interval curves around the dose-response
curve which has been fitted to the data form the appropriate feeding
trials. The consequence of these large differences is to  limit our
confidence in the expected values which are generated from the dose-
response curves of the feeding trial studies.

(3) Functional form for expressing dose-response relationships.

Combined with the data limitations of the feeding trials, it is not obvious
which of the mathematical functional forms best characterizes the dose-
response relationship between the bacterial enteric pathogens of the
feeding trial studies and the population of test subjects in those feeding
trials. The appropriate choice of mathematical functional form continues
to plague dose-response analysis in bacterial risk assessment.  Although
the beta-poisson functional form has the best “goodness-of-fit”
characteristics, when it is used to model most bacterial pathogens
(Crockett, 1995; Fazil, 1997; Hass, 1996;  Morales, 1996), several
analysts have noted shortcomings in the use of the beta-poisson
(Morales, 1996; Vose, 1998) on theoretical grounds as well as in
parameter estimation for use in practical applications.  Visual inspection
of the confidence limits for a typical beta-poisson dose-response
function reveals that  a wide variety of functional forms will produce
dose-response curves which are contained within the confidence limits
of the beta-poisson dose-response function. The appropriate functional
form for modeling a dose-response relationship for low-dose exposure
has not been established. The functional form for modeling a dose-
response relationship for low-dose exposure may be different from the
functional form for modeling a dose-response relationship for moderate-
or high-dose exposure to bacterial pathogens.  Finally, there are
arguments in the literature for the use of functional forms other than the
beta-poisson functional form; it is argued that these other functional
forms may better model the probability of illness after exposure
(Morales, 1996).

(4) Incorporating uncertainty in calculating probability of illness.

Because the beta-poisson functional form is a two-parameter model,
confidence intervals for the beta-poisson functional form are computed
by a bootstrap method and are not computed analytically. This
requirement to use a bootstrap method of calculation for the confidence
interval complicates the explicit specification of uncertainty in dose-
response calculations.  Thus the uncertainty in dose-response
calculations can not  be specified by incorporating some numerical
multiple of the variance of a particular estimator. Furthermore, the
confidence interval around the probability of illness after an exposure to
a specific number of organisms is not constant over the range of doses to
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which people are exposed in daily life. The practical result of using the
beta-poisson functional form  is that risk-analysts must resort to the
types of approximations we have used in modeling the dose-response
relationship with the beta-poisson functional form.  Additional research
in quantitative methods is needed to remedy this aspect of bacterial  risk
modeling.

(5) Variation in response to pathogens in different food vehicles and
different meal sizes. 

It is well established that foods with a high-fat content protect bacteria
from the bactericidal effects of gastric acidity.  It is also recognized that,
when the same number of bacteria are consumed but the total amount of
food varies,  the amount of food consumed is negatively correlated to
probability of illness - i.e. for the same number of bacteria, the more
food eaten, then the less likely the risk of diarrhea . Food vehicle and
meal size are, therefore, two important variables in predicting the
response to exposure to a given number of bacteria. These two factors
further complicate the construction of an appropriate dose-response
curve.

c. Probability of clinical outcomes when ill.

Several of the parameters which describe the probabilities for clinical outcomes
of disease were not described explicitly because of the lack of data.  These
parameters were derived from other conditional probabilities which were
explicitly described based on clinical professional experience.

(1) Probability of seeing a physician, if ill.  

The basic source of evidence for this parameter is the FoodNet project
results (CDC, 1998).  We assumed this value was appropriate for the
normal sub-population, but we had no explicit data or survey results to
describe the uncertainty around this estimate.  We are aware of no
published estimate of this parameter for the  susceptible sub-populations,
and the value of this estimate for the susceptible sub-population will
vary widely within the susceptible sub-population depending on their
particular health status and underlying medical problems and age.

(2) The other conditional probabilities for both normal and susceptible sub-
populations suffer from the same lack of published data or information. 
Within the susceptible sub-populations, the probability of specific
outcomes will vary considerably given the age and medical status of the
individual.



Public Health Outcomes Module

Page 255

(3) There is evidence that the conditional probabilities of specific clinical
outcomes for an ill individual is functionally related to the number of
organisms ingested. 

Evidence suggests that with an increasing dose of the enteric pathogen
the incubation period is shorter after exposure and the symptoms are
more severe; It is believed that as the ingested dose of the enteric
pathogen increases, the  probability of a physician visit and subsequent
hospitalization increases.  Because of lack of data, we did not
incorporate this belief into the computation of the probability of specific
clinical outcomes.  As public health investigators collect more data
during outbreak investigations pertaining to the likely numbers of
pathogens ingested, ingested dose can be correlated to clinical outcomes,
and this correlation can be included in future modeling efforts.

d. Probability of long-term sequelae to illness.

Although a number of to infection with SE have been identified, we estimated
the frequency of only one long-term sequelae, and that is reactive arthritis.  We
are not aware of epidemiologic evidence or data which quantifies the rate of
reactive arthritis at different levels of exposure to SE. Such epidemiologic data
would be used in validating the results of the model. A complicating factor is the
observation that reactive arthritis can arise from exposure to several other
foodborne pathogens as well as other non-food related causes.
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